Evidence for a metamagnetic transition in the heavy fermion system CeTiGe


Evidence for a metamagnetic transition in the heavy fermion system CeTiGe

Deppe, M.; Skourski, Y.; Caroca-Canales, N.; Geibel, C.; Sereni, J. G.

Systems located close to a quantum critical point are of high interest, because low lying quantum fluctuations (QF’s) can lead to new physical phenomena. The compound CeTiGe crystallizes in the CeFeSi structure type, which presents some (2D) character enhancing QF’s. Our first detailed investigations of Cp(T), Chi(T), and rho(T) at low temperatures for CeTiGe indicate that it is a new paramagnetic heavy fermion system with an enhanced Sommerfeld - coefficient gamma0 ≈ 0.3 J/(K2mol). Further analyses using the Coqblin-Schrieffer (CS) model showed that the whole J = 5/2 multiplet is involved in the formation of the ground state. The CS - model predicts a broad s-shaped magnetization at high fields and to study this we extended our investigation to measurements under high magnetic field. Here we present the results of magnetization measurements M vs. B in fields up to 14 T performed in a commercial Physical Property Measurement System (PPMS®) and additional data obtained in pulsed high fields up to 60 T performed at the Dresden high magnetic field laboratory (HLD). Instead of the expected behavior these measurements revealed a steplike metamagnetic transition (MMT) at a critical field of μ0Hc ≈ 12.5 T of the size ΔM ~ 0.74 μB/Ce for T = 1.4 K. Thus CeTiGe is the second paramagnetic Ce - based Kondo lattice besides CeRu2Si2 showing a clear MMT below 20 T. In contrast to CeRu2Si2, CeTiGe shows a hysteresis at the MMT. We shall further present the effect of substitution La for Ce on this metamagnetic transition.

  • Poster
    RHMF 09 (Research in High Magnetic Fields 2009), 22.-25.07.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-13076