Retention of selenium oxyanions onto kaolinite and illite


Retention of selenium oxyanions onto kaolinite and illite

Jordan, N.; Foerstendorf, H.; Brendler, V.

In the context of nuclear waste management, long-term safety assessments have shown that selenium-79, released from the solid waste matrix, could be one of the major isotopes contributing to the global radioactivity potentially reaching the biosphere. Selenium has a quite complex speciation, with four main oxidation states, depending on both the pH and the redox potential of the surrounding environment. Sorption onto minerals can strongly affect the availability and the mobility of selenium. It is thus of great importance to be able to characterize both at a macroscopic and a microscopic level the different processes (retention, reduction, surface precipitation, …) that can potentially take place.
Regarding the multi-barrier concept considered for deep underground storage of high level and long-lived radionuclides, clays are candidates as host rock as well as backfill materials. The main phases constituting clay rocks are minerals such as montmorillonite, bentonite, or illite, but also other compounds like iron oxides, titanium oxide, pyrite, calcite and organic matter. It has already been shown that clays and iron oxides can sorb and reduce selenium(VI) and selenium(IV) (Nguyen et al. (2005), Scheinost and Charlet (2008), Charlet et al. (2007)).
Thus, sorption experiments of selenium(VI) and selenium(IV) onto kaolinite and illite have been performed. Kaolinite and illite have been investigated since they are abundant and well crystallized clay mineral in soils. To get a better understanding of involved sorption mechanisms, a combination of both macroscopic and microscopic measurements have been used.
Kaolinite KGa1-b from the Clay Mineral Society repository has been used without further pretreatment. Illite du Puy (France) has been purified in order to remove auxiliary and minor phases to get a homo-ionic “Na-illite” clay. Then, batch experiments aiming at studying the sorption behaviour of selenium(IV) onto kaolinite and illite have been performed in NaCl and NaClO4. Preliminary results show that clays have higher affinity towards selenium(IV) compared to selenium(VI), which is an agreement with former studies on iron and aluminium oxides (Rovira et al. (2008). The influence of the suspensions´pH, as well as the ionic strength effect has been investigated. All the experiments have been performed under anoxic conditions in a glove box under N2 atmosphere (O2 < 1 ppm). Selenium speciation in solution has been checked using Hydride Generation-Atomic Absorption Spectroscopy measurements. The oxidation state of the selenium species once sorbed onto the kaolinite and illite surface has been evidenced using X-Ray Photoelectron Spectroscopy.
Electrophoresis measurements have also been performed during this work. Comparison between the zeta potential of the kaolinite and illite surfaces before and after selenium oxyanions retention has been done, to check whether the sorption takes place by chemical bonding formation or rather by electrostatic attraction.
Finally, ATR-FTIR measurements have been performed using an ATR ZnSe crystal. By comparison with former IR measurements concerning selenato and selenito-ligands containing complexes as well as phases with sorbed selenium species, the fashion binding of selenium(VI) and selenium(IV) onto illite has been evidenced.

  • Contribution to proceedings
    Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, 29.03.-01.04.2010, Nantes, France, 413-414

Permalink: https://www.hzdr.de/publications/Publ-13163