Ion irradiation of permalloy: From thin magnetic films to lateral exchange spring nanostructures


Ion irradiation of permalloy: From thin magnetic films to lateral exchange spring nanostructures

Strache, T.; Reichel, L.; Wintz, S.; Fritzsche, M.; Mönch, I.; Raabe, J.; Martin, N.; McCord, J.; Körner, M.; Markó, D.; Romstedt, F.; Fassbender, J.

Due to its low coercivity and negligible magnetostriction, permalloy (Ni80Fe20) is one of the most used materials in thin film and micro/nano magnetism. By means of ion irradiation the magnetic properties can be modified [1], and in combination with a lithographically defined mask or the use of a focused ion beam magnetic patterning can be achieved [2]. The changes of the magnetic properties due to ion-solid- interaction must be related to different origins, e.g. direct implantation, surface sputtering and interfacial mixing. Their respective influence depends strongly on the chosen multilayer system as well as on the implantation conditions.
Here we present a systematic study of irradiation of permalloy with common ion species. Special emphasis is put on the separation of the effect of direct implantation from mixing and sputtering. By transferring this knowledge to laterally resolved irradiation, direct exchange coupled magnetic stripes of submicron width are created. The magnetization reversal process of this lateral exchange spring structures depends on the interaction between adjacent soft and hard magnetic stripes. By scaling the stripe sizes down, fundamental questions regarding the maximum domain wall density and the domain–wall interaction may be addressed.

References
[1] J. Fassbender et al., Physical Review B 73, 184410 (2006).
[2] J. McCord et al., Advanced Materials 20, 2090 (2008).

  • Lecture (Conference)
    Workshop Ionenstrahlphysik, 06.-08. April 2009, Friedrich-Schiller-Universität Jena, 06.04.2009, Jena, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-13543