Parallel proximal probe arrays with vertical interconnections


Parallel proximal probe arrays with vertical interconnections

Sarov, Y.; Frank, A.; Ivanov, T.; Zöllner, J.-P.; Ivanova, K.; Volland, B.; Rangelow, I. W.; Brogan, A.; Wilson, R.; Zawierucha, P.; Zielony, M.; Gotszalk, T.; Nikolov, N.; Zier, M.; Schmidt, B.; Kostic, I.

This article presents the fabrication and the characteristics of 8x64, parallel, self-actuated, and independently addressable scanning proximal probes with through-silicon via interconnection passing completely through a silicon wafer. The low-resistance highly doped polysilicon through-wafer electrical interconnects have been integrated with scanning proximal probes (SPPs) to enable back side contacts to the application-specific integrated circuit used as an atomic force microscope control circuitry. Every SPP sensor contains a deflection sensor, thermally driven bimetal (bimorph) actuator, and sharp silicon tip. Dry etching-based silicon on insulator three-dimensional-micromachining technique is employed by the creation of the through-silicon vias and the SPP arrays keeping fully complementary metal-oxide semiconductor compatible process regime. The application of the vertical interconnection technology in large-scale two-dimensional cantilever arrays with off-plane bent cantilevers over the chip’s surface, in a combination with the flip-chip packaging technology allow simultaneous approach and parallel scanning of large areas in noncontact mode.

Keywords: AFM probe array; electrical through wafer interconnect; piezoresistive deflection sensor; thermally driven deflection actuator

Permalink: https://www.hzdr.de/publications/Publ-13572