Reactive Magnetron Sputtering of (GeOx-SiO2) Superlattices for Nanocrystal Synthesis


Reactive Magnetron Sputtering of (GeOx-SiO2) Superlattices for Nanocrystal Synthesis

Zschintzsch, M.; Jeutter, N. M.; von Borany, J.; Muecklich, A.

The underlying motivation of this research is the tailored growth of Ge nanocrystals (NC) for photovoltaic applications [1,2]. Of special interest are the study of confinement effects to design bandgap engineered materials enabling light absorption within a wide range of the solar spectrum. In this contribution we enlighten the deposition process of (GeOx-SiO2) superlattice structures (SL) via reactive DC magnetron sputtering and the self-ordered Ge-nanocrystal formation during subsequent annealing. SL structure delivers a reliable method to control the NC size after phase separation. Main attention is directed to define proper deposition conditions for tuning the GeOx composition between elemental Ge (x=0) and GeO2 (x=2) by the variation of the deposition temperature and the oxygen partial pressure. A process window has been found which allows GeOx / SiO2 deposition without changing the oxygen flow during the deposition. The phase separation and Ge NCs formation after subsequent anneling was investigated with in − situ X-ray diffraction, Raman spectroscopy and electron microscopy, confirming the existence of 2-5 nm Ge NCs. As the used technique allows to produce SL stacks with very smooth interfaces (roughness <1 nm), the Ge NC layers could be separated by very thin SiO2 films (d >3 nm) which offers interesting possibilities for charge transport via tunneling.

  • Lecture (Conference)
    DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM) 2009, 22.-27.03.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-13648