Electrical control of magnetoresistance in highly insulating Co-doped ZnO


Electrical control of magnetoresistance in highly insulating Co-doped ZnO

Xu, Q.; Zhou, S.; Bürger, D.; Hochmuth, H.; Lorenz, M.; Grundmann, M.; Schmidt, H.

An insulating Zn0.96Co0.04O film on a highly conducting Zn0.99Al0.01O layer has been deposited on a-plane sapphire substrate by pulsed laser
deposition to study the magnetoresistance (MR) of depleted Co-doped ZnO with low electron concentration (about 1.5x1017 cm-3 at 21 K). Au ohmic contact and Pd Schottky contact were deposited on the Zn0.99Al0.01O and Zn0.96Co0.04O layer, respectively. Positive magnetoresistance (MR) of 30 % with current of 10-6 A was observed at 5 K. The positive MR decreases drastically at 5 K and changes to negative MR at 50 K with increasing current, which is considered to be due to the bias voltage control of the electron concentration in the Zn0.96Co0.04O layer. Our work demonstrates the electrically controllable magnetotransport behavior in insulating ZnO-based diluted magnetic semiconductors.

Keywords: diluted magnetic semiconductor; ZnO; magnetoresistance

Permalink: https://www.hzdr.de/publications/Publ-13700