Magnetic excitations of the gapped quantum spin dimer antiferromagnet Sr3Cr2O8


Magnetic excitations of the gapped quantum spin dimer antiferromagnet Sr3Cr2O8

Quintero-Castro, D. L.; Lake, B.; Wheeler, E. M.; Islam, A. T. M. N.; Guidi, T.; Rule, K. C.; Izaola, Z.; Russina, M.; Kiefer, K.; Skourski, Y.

dimers by the dominant antiferromagnetic intrabilayer coupling. The dimers are coupled three dimensionally by frustrated interdimer interactions. A structural distortion from hexagonal to monoclinic leads to orbital order and lifts the frustration giving rise to spatially anisotropic exchange interactions. We have grown large single crystals of Sr3Cr2O8 and have performed DC susceptibility, high-field magnetization and inelastic neutron scattering measurements. The neutron scattering experiments reveal three gapped and dispersive singlet to triplet modes arising from the three twinned domains that form below the transition thus confirming the picture of orbital ordering. The exchange interactions are extracted by comparing the data to a random phase approximation model and the dimer coupling is found to be J0 = 5.551(9) meV, while the ratio of interdimer to intradimer exchange constants is J´/J0 = 0.64(2). The results are compared to those for other gapped magnets.

  • Physical Review B 81(2010), 014415

Permalink: https://www.hzdr.de/publications/Publ-13860