Magneto-Acoustic Properties of UCuGe Single Crystal


Magneto-Acoustic Properties of UCuGe Single Crystal

Yasin, S.; Andreev, A. V.; Sytcheva, A.; Zherlitsyn, S.; Wosnitza, J.

Abstract We report on results of sound velocity and sound-attenuation measurements performed on the antiferromagnetic (TN = 48 K) UCuGe. The measurements have been done on a UCuGe single crystal at different frequencies for longitudinal ultrasound waves propagating along the [001] direction in static (up to 18 T) and pulsed (up to 60 T) magnetic fields applied along the same direction. The temperature dependences of the sound velocity and attenuation display a pronounced anomaly at TN, which is evidence for a strong magneto-elastic interaction. The pulse-field measurements at 4.2 K show a minimum in the sound velocity followed by a jump-like anomaly at 37 T, and another kink-like anomaly at 48–49 T. These anomalies are due to field-induced spin rearrangements as measured in magnetization studies. In the paramagnetic state (T > TN), both acoustic characteristics show large frequency-dependent changes revealing the presence of an unusual relaxation mechanism which might be due to vacancy dynamics.

  • Journal of Low Temperature Physics 159(2010), 105-108

Permalink: https://www.hzdr.de/publications/Publ-14058