Electronic structure and magnetic properties of the spin-gap compound Cu2(PO3)2CH2: Magnetic versus structural dimers


Electronic structure and magnetic properties of the spin-gap compound Cu2(PO3)2CH2: Magnetic versus structural dimers

Schmitt, M.; Gippius, A. A.; Okhotnikov, K. S.; Schnelle, W.; Koch, K.; Janson, O.; Liu, W.; Huang, Y.-H.; Skourski, Y.; Weickert, F.; Baenitz, M.; Rosner, H.

A joint experimental and theoretical investigation of the spin 1/2 system Cu2(PO3)2CH2 suggests a description of this compound as coupled alternating antiferromagnetic Heisenberg chains. Magnetic susceptibility, specific heat, nuclear magnetic resonance, nuclear quadrupole resonance, and high-field magnetization measurements evidence a spin gap of about 25 K. Surprisingly, the leading antiferromagnetic exchange of about 75 K can be assigned by density-functional band-structure calculations to a coupling between the structural Cu2O6 dimers, whereas the coupling within these dimers is strongly reduced due to sizable ferromagnetic contributions. The coupling within the structural dimers competes with a number of long-range couplings. The present available experimental data can be consistently described in a scenario of coupled alternating chains. The proposed model should be considered as a minimal model for an appropriate description of this compound.

Permalink: https://www.hzdr.de/publications/Publ-14063