The sorption of U(VI), Np(V) and Se(VI) onto surfaces of selected metal oxidesstudied by in situ vibrational spectroscopy


The sorption of U(VI), Np(V) and Se(VI) onto surfaces of selected metal oxidesstudied by in situ vibrational spectroscopy

Müller, K.; Meusel, T.; Foerstendorf, H.; Brendler, V.; Bernhard, G.; Lefèvre, G.

The migration behavior of actinides and other radioactive contaminants in the environment is controlled by prominent molecular phenomena such as hydrolysis and complexation reactions in aqueous solutions as well as the diffusion and sorption onto minerals present along groundwater flow paths. These reactions significantly influence the mobility and bioavailability of the metal ions in the environment, in particular at liquid-solid interfaces. Hence, for the assessment of migration processes the knowledge of the mechanisms occurring at interfaces is crucial. The required structural information can be obtained using various spectroscopic techniques.
In the present study, the speciation of uranium(VI), neptunium(V) and selenium(VI) at environmentally relevant mineral – water interfaces of oxides of titania, alumina, silica, iron, zinc, and alumosilicates has been investigated by the application of attenuated total reflection Fouriertransform infrared (ATR FT-IR) spectroscopy.
Moreover, the distribution of the hydrolysis products in micromolar aqueous solutions of U(VI) and Np(V/VI) at ambient atmosphere has been characterized for the first time, by a combination of ATR FT-IR spectroscopy, near infrared (NIR) absorption spectroscopy, and speciation modeling applying updated thermodynamic databases.

  • Lecture (others)
    Seminar at the Institut de Physique Nucléaire, Division de Recherche Radiochemie., 10.05.2010, Orsay, France

Permalink: https://www.hzdr.de/publications/Publ-14076