Microstructure of oxide dispersion strengthened Eurofer and iron–chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy


Microstructure of oxide dispersion strengthened Eurofer and iron–chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy

Heintze, C.; Bergner, F.; Ulbricht, A.; Hernandez-Mayoral, M.; Keiderling, U.; Lindau, R.; Weißgärber, T.

Oxide dispersion strengthening of ferritic/martensitic chromium steels is a promising route for the extension of the range of operation temperatures for nuclear applications. The investigation of dedicated model alloys is an important means in order to separate individual effects contributing to the mechanical behaviour under irradiation and to improve mechanistic understanding. A powder metallurgy route based on spark plasma sintering was applied to fabricate oxide dispersion strengthened (ODS) Fe9Cr model materials. These materials along with Eurofer97 and ODS-Eurofer were investigated by means of small-angle neutron scattering (SANS) and TEM. For Fe9Cr–0.6 wt.%Y2O3, TEM results indicate a peak radius of the size distribution of Y2O3 particles of 4.2 nm with radii ranging up to 15 nm, and a volume fraction of 0.7%, whereas SANS indicates a peak radius of 3.8 nm and a volume fraction of 0.6%. It was found that the non-ODS Fe9Cr and Eurofer97 are suitable reference materials for ODS-Fe9Cr and ODS-Eurofer, respectively, and that the ODS-Fe9Cr variants are suitable model materials for the separated investigation of irradiation-Y2O3 particle interaction effects.

Permalink: https://www.hzdr.de/publications/Publ-14103