Proton mu-PIXE mapping, AFM imaging and size statistics of mineral granules in a dental composite


Proton mu-PIXE mapping, AFM imaging and size statistics of mineral granules in a dental composite

Preoteasa, E.; Preoteasa, E.; Harangus, L.; Moldovan, A.; Dinescu, M.; Grambole, D.; Herrmann, F.

We applied proton microbeam particle-induced X-ray emission (mu-PIXE) for mapping Ca, Zr, Ba and Yb, and atomic force microscopy (AFM) for imaging the surface landscape of a dental composite which releases Ca2+ and F- for the protection of hard dental tissues. Three areas,similar to 250 x 250 mu m(2) located similar to 0.5-2 mm apart on a smooth surface specimen were mapped with 3.1 MeV protons focused to a similar to 3.0 mu m spot and at similar to 3.9 mu m pixel size sampling. The maps evidenced particles with diameters of 3.2-32 mu m (Ca), 20-60 mu m (Zr), <= 4 mu m (Ba) and 10-50 mu m (Yb). Cross-section area histograms of Ca-rich particles fitted with 2-6 Poisson functions revealed a polydisperse size distribution and substantial differences from an area to another, possibly implying large local variations of Ca2+ released in the hard tissue near a dental filling of a few millimeters in diameter. Such imbalances may lead to low local Ca2+ protection of the dental tissue!
, favoring the onset of secondary caries. Similarly, AFM images showed high zone-dependent differences in the distributions of grains with apparent diameters of 1-4 mu m, plausibly recognized as Ca- and Ba-containing particles. In a simple model based on demineralization data, lateral diffusion of Ca2+ between adjacent domains containing high- and low-area Ca-rich grains is described by exponential concentration gradients. These gradients may generate appreciable electromotive forces, which may enhance electrochemically the local tissue demineralization. Similar effects are to be expected in the protective action of F- ions released from microgranules of YbF3 and of Ba fluoroaluminosilicate glass.

  • X-Ray Spectrometry 39(2010)3, 208-215

Downloads

Permalink: https://www.hzdr.de/publications/Publ-14138