Effects of lateral fluid percussion injury on cholinergic markers in the newborn piglet brain


Effects of lateral fluid percussion injury on cholinergic markers in the newborn piglet brain

Donat, C. K.; Walter, B.; Kayser, T.; Deuther-Conrad, W.; Schliebs, R.; Nieber, K.; Bauer, R.; Haertig, W.; Brust, P.

Traumatic brain injury is a leading cause of death and disability in children. Studies using adult animal models showed alterations of the central cholinergic neurotransmission as a result of trauma. However, there is a lack of knowledge about consequences of brain trauma on cholinergic function in the immature brain. It is hypothesized that trauma affects the relative acetylcholine esterase activity and causes a loss of cholinergic neurons in the immature brain. Severe fluid percussion trauma (FP-TBI, 3.8 0.3 atm) was induced in 15 female newborn piglets, monitored for 6 h and compared with 12 control animals. The hemispheres ipsilateral to FP-TBI obtained from seven piglets were used for acetylcholine esterase istochemistry on frozen sagittal slices, while regional cerebral blood flow and oxygen availability was determined in the remaining eight FP-TBI animals. Post-fixed slices were immunohistochemically labelled for choline acetyltransferase as well as for lowaffinity neurotrophin receptor in order to characterize cholinergic neurons in the basal forebrain. Regional cerebral blood flow and brain oxygen availability were reduced during the first 2 h after FPTBI (P < 0.05). In addition, acetylcholine esterase activity was significantly increased in the neocortex, basal forebrain, hypothalamus and medulla after trauma (P < 0.05), whereas the number of choline acetyltransferase and low-affinity neurotrophin receptor positive cells in the basal forebrain were unaffected by the injury. Thus, traumatic brain injury evoked an increased relative activity of the acetylcholine esterase in the immature brain early after injury, without loss of cholinergic neurons in the basal forebrain. These changes may contribute to developmental impairments after immature traumatic brain injury.

Keywords: Traumatic brain injury; Immature brain; Cholinergic system; Acetylcholine esterase

Permalink: https://www.hzdr.de/publications/Publ-14190