Slip ratio in dispersed viscous oil-water pipe flow


Slip ratio in dispersed viscous oil-water pipe flow

Rodriguez, I. H.; Yamaguti, H. K. B.; de Castro, M. S.; Da Silva, M. J.; Rodriguez, O. M. H.

In this article, dispersed flow of viscous oil and water is investigated. The experimental work was performed in a 26.2-mm-i.d. 12-m-long horizontal glass pipe using water and oil (viscosity of 100 mPa.s and density of 860 kg/m3) as test fluids. High-speed video recording and a new wire mesh sensor based on capacitance (permittivity) measurements were used to characterize the flow. Furthermore, holdup data were obtained using quick-closing-valves technique (QCV). An interesting finding was the oil-water slip ratio greater than one for dispersed flow at high Reynolds number. Chordal phase fraction distribution diagrams and images of the holdup distribution over the pipe cross-section obtained via wire-mesh sensor indicated a significant amount of water near to the pipe wall for the three different dispersed flow patterns identified in this study: Oil-in-water Homogeneous Dispersion (o/w H), Oil-in-water Non-homogeneous Dispersion (o/w NH) and Dual continuous (Do/w & Dw/o). The phase slip might be explained by the existence of a water film surrounding the homogeneous mixture of oil in water in a hidrofilic-oilfobic pipe.

Keywords: Liquid-liquid flow; oil-water flow; viscous oil; dispersed flow; slip ratio; wire-mesh sensor

Permalink: https://www.hzdr.de/publications/Publ-14364