Synthesis and tilting of precipitation patterns in carbon-transition metal nanocomposite thin films by hyperthermal ion deposition


Synthesis and tilting of precipitation patterns in carbon-transition metal nanocomposite thin films by hyperthermal ion deposition

Abrasonis, G.; Oates, T. W. H.; Kovacs, G. J.; Tucker, M.; Grenzer, J.; Persson, P. O. A.; Heinig, K. H.; Martinavicius, A.; Jeutter, N.; Baehtz, C.; Bilek, M. M. M.; Möller, W.

The structure control, especially at the nanoscale, is of the utmost importance in the field of the materials science of thin films. Here, the hyperthermal ion induced self-organization caused by phase separation during the carbon-transition metal (Ni, Cu) thin film growth is reported. The films have been grown by ionized physical vapour deposition using filtered cathodic vacuum arc. Influence of the metal type, film composition, ion energy and incidence angle is studied. The film morphology has been determined by transmission electron microscopy and grazing incidence small angle x-ray scattering. At these growth conditions, atomic displacements are caused solely by impacting energetic ions, resulting in phase separation in an advancing surface layer. If the metal amount surpasses some critical value, this layer switches to an oscillatory mode and a nanoscale precipitation pattern emerges. We demonstrate that the ion induced atomic mobility is not random, as it would be in the case of thermal diffusion, but conserves to a large extent the initial direction of the incoming ions, resulting in a tilting of the periodic precipitation structures for the oblique ion incidences. The metal nanopatterns no longer align with the advancing surface, but with the incoming ions. We establish a dependence of the nanopattern morphology on the growth parameters and demonstrate a method for controlling the nanopatterning. Application of this concept opens new ways for the bottom-up nanostructure control for composite materials.

Involved research facilities

Related publications

  • Poster
    17th International Conference on Ion Beam Modification of Materials (IBMM), 22.-27.08.2010, Montréal, Québec, Canada

Permalink: https://www.hzdr.de/publications/Publ-14563