A trigonal nodal solution approach to the multi-group simplified P3 equations in the reactor code DYN3D


A trigonal nodal solution approach to the multi-group simplified P3 equations in the reactor code DYN3D

Duerigen, S.; Grundmann, U.; Mittag, S.; Merk, B.; Fridman, E.; Kliem, S.

The neutronics model of the nodal reactor dynamics codeDYN3D developed for 3-D analyses of steady states and transients in light-water reactors has been extended by a simplified P3 (SP3) neutron transport option to overcome the limitations of the diffusion approach. To provide a method being applicable to reactors with hexagonal fuel assemblies and furthermore allowing flexible mesh refinement, the nodal SP3 method has been developed on the basis of a flux expansion in trigonal-z geometry. In this paper, the derivation of the trigonal SP_3 method is presented and preliminary assessment of the methodology is performed.

Keywords: simplified P3; SP3; nodal method; trigonal; triangular; hexagonal

  • Contribution to proceedings
    International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), 08.-12.05.2011, Rio de Janeiro, Brazil, 978-85-63688-00-2
  • Lecture (Conference)
    International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), 08.-12.05.2011, Rio de Janeiro, Brazil

Permalink: https://www.hzdr.de/publications/Publ-14858