Ion-beam induced hydrogen redistribution in a-Si:H-based triple layer structures


Ion-beam induced hydrogen redistribution in a-Si:H-based triple layer structures

Pantchev, B.; Danesh, P.; Schmidt, B.; Grambole, D.; Bischoff, L.

Ion-beam induced hydrogen migration has been studied in triple layer structures, a-Si/a-Si:H/a-Si and SiO2/a-Si:H/SiO2. Nuclear reaction analysis has been used for simultaneous irradiation with MeV ions and measurement of hydrogen distribution in the structures. It has been established that there is no hydrogen loss from SiO2/a-Si:H/SiO2 structures, but an asymmetric redistribution due to hydrogen penetration into the bottom SiO2 layer. Hydrogen loss has been observed from the a-Si/a-Si:H/a-Si structures. The inspection of the surface of these samples by means of atomic force microscope has shown that it proceeds by bubble formation and blistering at the inner interface. The observed ion-beam induced selective penetration of hydrogen into the underlying material can be used as a tool for preparation of microcavity and microchannel arrays.

Keywords: a-Si:H; ion implantation; hydrogen migration

Involved research facilities

Related publications

  • Lecture (Conference)
    16 th International School on Condensed Matter Physics “Progress in Solid State and Molecular Electronics, Ionics and Photonics”, 29.08.-03.09.2010, Varna, Bulgaria
  • Open Access Logo Journal of Physics: Conference Series 253(2010), 012055
    DOI: 10.1088/1742-6596/253/1/012055
    Cited 1 times in Scopus

Permalink: https://www.hzdr.de/publications/Publ-14868