Influence of Al concentration on structure and electrical properties of polycrystalline and epitaxial Al-doped ZnO films grown by reactive pulsed magnetron sputtering


Influence of Al concentration on structure and electrical properties of polycrystalline and epitaxial Al-doped ZnO films grown by reactive pulsed magnetron sputtering

Cornelius, S.; Vinnichenko, M.; Kolitsch, A.; Möller, W.

Al-doped ZnO (AZO) films which combine maximum carrier mobility (μe), moderate free electron densities (Ne) and high surface roughness are of special interest for application as transparent front electrode in thin film solar cells. They posses high transmission in the near infrared region, close to the bandgap energy of absorber materials like Si (Eg =1.11 eV), and enable a superior light trapping behaviour. A key to tailor AZO film properties is understanding the mechanisms and effects of the Al-dopant incorporation into the ZnO matrix. The present work focuses on investigation of the influence of Al concentration on the electrical properties of AZO and on establishing performance limits with respect to carrier mobility and resistivity (ρ). Polycrystalline and epitaxial AZO films are grown on fused silica and c-axis oriented sapphire substrates, respectively, by reactive pulsed magnetron sputtering using several sets of Zn/Al alloy targets with an Al concentration (cAl) between 0.7 and 8.7 at%. A systematic variation of process parameters such as substrate temperature (Ts) and oxygen partial pressure results in polycrystalline films with μe>45 cm2V-1s-1 and ρ<2.3x10-4 Ωcm at optimum conditions, whereas μe~55 cm2V-1s-1 could be obtained for epitaxial films. It is observed that cAl has a strong influence on the optimum value of Ts, the maximum μe and Ne values and also on film structure and surface roughness. Extensive XRD investigations reveal that Al incorporation in the ZnO matrix has a detrimental effect on in-plane orientation and texture of epitaxial films, even for the lowest cAl used. Furthermore RBS and ERDA confirm a considerable Al enrichment in the films which correlates with deterioration of μe, when Ts is increased above its optimum value. The observed dependence of carrier mobility on Ne in ZnO:Al is discussed in the framework of ionized impurity scattering and clustering as well as grain boundary limited transport which predicts a fundamental physical limit of μe.

Keywords: reactive sputtering; zinc oxide; AZO; mobility; density; resistivity; RBS; ERDA; transparent conductive oxides; ionized impurity scattering

Involved research facilities

Related publications

  • Poster
    Twelfth International Conference on Plasma Surface Engineering (PSE 2010), 13.-17.09.2010, Garmisch Partenkirchen, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-14907