Competition of dipolar interactions and lateral exchange spring effect in NiFe elements


Competition of dipolar interactions and lateral exchange spring effect in NiFe elements

Martin, N.; Strache, T.; Mönch, I.; Schultz, L.; Fassbender, J.; McCord, J.

Conventional exchange spring systems consist of directly exchange coupled hard and soft magnetic layers, which characteristic behaviour is related to an interlayer domain wall that is formed during reversal of magnetization. Recently, a similar exchange spring effect was achieved in lateral hard/soft magnetic stripe structures, which were fabricated by means of ion implantation of single layer films [1]. This technique offers the possibility to directly investigate the changes of magnetization in and between the hard/soft phases.

In the presented work, lateral exchange spring structures were prepared on patterned samples to investigate the interplay between structuring and additional dipolar fields. In contrast to extended films, the lateral exchange spring effect only occurs for a higher difference in saturation magnetization Ms between the two magnetic phases. The measured collective magnetization reversal of hard and soft phase is attributed to strong dipolar fields at the element edges that cause a hysteresis behaviour which is comparable to that of a magnetic homogeneous square element. The exchange spring behaviour, occurring with increasing difference in Ms between the two phases is related to an increase in effective shape anisotropy in the high Ms stripes. The magnetization reversal approaches an individual switching of the stripes, with the low Ms stripes switching first. This results in an antiparallel alignment of magnetization of the individual stripes with lateral domain walls in between, which configuration is stabilized by the inter-stripe flux closure. The resulting two-step reversal is modelled, taking the demagnetization and domain wall energy terms into account.

Keywords: ion implantation; thin films; Permalloy; magneto-optical imaging

Involved research facilities

Related publications

  • Lecture (Conference)
    55th Annual Conference on Magnetism & Magnetic Materials, 14.-18.11.2010, Atlanta, Georgia, USA

Permalink: https://www.hzdr.de/publications/Publ-14914