Novel biosensors by combining bacterial S-layers, fluorescent dyes and aptamers


Novel biosensors by combining bacterial S-layers, fluorescent dyes and aptamers

Weinert, U.; Günther, T.; Pollmann, K.; Raff, J.

Bacterial surface layer (S-layer) represent the outermost cell envelope of various bacteria and feature a lot of functions such as protection, binding, filtration or framework. From the uranium mining waste pile “Haberland” near Johanngeorgenstadt in Saxony different Bacilli were isolated and their S-layer proteins were investigated. These S-layer proteins are able to self assemble in aqueous solution and form sheets or tubes with a hexagonal, square or oblique paracrystalline structure. By combining S-layers with polyelectrolytes, many technical surfaces, e.g. SiO2 wafers, can be covered with a closed and highly regular protein layer. The so modified materials are very promising for the construction of multifunctional materials, particularly new biosensors. Their high content of different and regularly arranged functional groups such as hydroxyl, amino and carboxyl groups provide a convenient platform for the sequential and defined coupling of sensor elements. So the idea is to construct a sensor system on the basis of S-layer proteins by combining fluorescence dyes with aptamers. Possible fluorescence dyes have an overlapping emission and excitation spectra and therefore the ability to induce a fluorescence resonance energy transfer (FRET). FRET describes a non radiation energy transfer between two chromophores. One chromophore (donor) in its excitated state will transfer energy to another chromophore (acceptor) and as a result the donor emission will decrease while the acceptor emission increases. The latter is detectable and can be used for the construction of the optical device of a sensor. One requirement therefore is the spatial proximity of both chromophores (<10nm), what can be easily achieved by using S-layers as nano-structured polymer with a high density of functional groups. Further components of the sensors are aptamers, working as specific receptors for analytes. Aptamers are short oligonucleotides with a high binding capacity towards a specific analyte, in present case specific pharmaceuticals and biocides. The combination of all three parts will lead to a selective, sensitive and adaptable sensory layer system useful for environmental technologies.

Keywords: S-layer; aptamers; fluorescence dyes; biosensor

  • Poster
    Nanocoatings-International Conference on Functional Nanocoatings, 28.-31.03.2010, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-14944