Effect of secondary phase formation on optical properties of the Al-doped ZnO


Effect of secondary phase formation on optical properties of the Al-doped ZnO

Vinnichenko, M.; Cornelius, S.; Krause, M.; Gago, R.; Munnik, F.; Sergeev, O.; Chakanga, K.; von Maydel, K.; Kolitsch, A.; Möller, W.

The electrical properties of low-cost Al-doped ZnO (AZO) films are known to deteriorate substantially during growth by different deposition techniques at temperatures above a certain optimum value. As it has been shown recently using techniques based on synchrotron radiation, the formation of an insulating metastable homologous (ZnO)3Al2O3 phase [1] at elevated temperatures is the reason for the observed behavior of the electrical properties in case of the films grown by reactive pulsed magnetron sputtering (RPMS) [2]. Little is known about optical properties of ZnO-Al2O3 solid solutions in general and (ZnO)3Al2O3 phase in particular. The optical properties in the UV spectral range are of special importance because they provide information about the fundamental and above-band gap band-to-band electron transitions. The present work focuses on characterization of AZO and undoped ZnO films in a wide spectral range by spectroscopic ellipsometry (photon energy range 0.73-5.8 eV) and spectrophotometry (0.5-6 eV). Selected samples were studied using Raman spectroscopy. The optical investigations complement results of Hall-effect, X-ray diffraction, X-ray absorption near edge structure (XANES) measurements, and elastic recoil detection analysis [2]. Films with defined Al concentrations (cFAl=0-20 at.%) grown by RPMS at temperatures ranging from RT to 550 °C were investigated.
The comparison of undoped ZnO and AZO films with the highest crystallinity shows that an addition of ~1 at.% of Al leads to the best electrical properties, although (ZnO)3Al2O3 phase signature appears in its Al K-edge XANES spectra. The latter may be a reason for the observed substantial decrease of the refractive index in the whole spectral range and for the broadening of the parametric semiconductor model (PSEMI) oscillator around the fundamental transition energies. This is accompanied by the broadening of the allowed ZnO Raman lines and appearance of the broad band around 565 cm-1 which is characteristic of ZnO with high defect concentrations. The AZO films remain conductive with cFAl values increasing up to ~8-10 at.%, while their (ZnO)3Al2O3 phase-related peaks in Al K-edge spectra scale with cFAl. In this case, refractive index decreases and PSEMI oscillator broadens further which is in agreement with deteriorating film crystallinity. At this level of doping the allowed ZnO Raman lines are no longer detectable. On the other hand, the defect induced Raman features change their intensity distribution. Finally, increasing cFAl>10 at.% leads to formation of insulating nanocrystalline films, which show even more intense (ZnO)3Al2O3 phase-related XANES peaks. These films have the lowest refractive index, which, however, is still substantially higher than that of amorphous Al2O3. The observed increasing UV transmittance can be explained by a significantly decreasing amplitude and a blue-shift of the PSEMI oscillator of these films. The latter may be explained neither by the Burstein-Moss shift because the films are insulating nor by effective medium approximation using optical constants of ZnO and Al2O3. Instead, it may be understood in analogy to optical properties of the metastable wurtzite MgXZn1-XO alloys. This assumption requires more detailed investigations which are currently in progress.
[1] S. Yoshioka et al, J. Appl. Phys. 103, 014309 (2008).
[2] M. Vinnichenko et al, Appl. Phys. Lett. 2010 (in press).

Keywords: transparent conducting oxides; magnetron sputtering; spectroscopic ellipsometry; Raman spectroscopy; spectral photometry

Involved research facilities

Related publications

  • Lecture (Conference)
    3rd International Symposium on Transparent Conductive Materials, 17.-21.10.2010, Analipsi / Hersonissos, Crete, Greece

Permalink: https://www.hzdr.de/publications/Publ-14992