Realization of the Nijmegen THz-FEL


Realization of the Nijmegen THz-FEL

Jongma, R. T.; Engels, A. C. N.; Lof, R. W.; Wijnen, F. J. P.; Wulterkens, G. F. A. J.; Zhaunerchyk, V.; van Dael, P. A. W.; van Roij, A. J. A.; van Vliet, A. P.; van der Zande, W. J.; Dunkel, K.; Piel, C.; Lehnert, U.; Michel, P.; Seidel, W.; Wuensch, R.; van der Meer, A. F. G.

The Radboud University in Nijmegen received funding to realize a narrow-band THz laser system and a 45 T hybrid magnet system. In this paper we present the technical solutions for realization of the main system components. We present the details of the RI Research Instruments GmbH (a former ACCEL Instruments GmbH activity) LINAC system. Operation of the full system (including the electron source) at 3 GHz is desirable and deemed feasible after first experimental studies. As the Nijmegen FEL will operate at wavelength up to 1.5 mm, the cavity will be fully waveguided, complicating the incorporation of an intra-cavity Fox-Smith interferometer required to induce coherence between micropulses and a Michelson interferometer as most ideal outcoupler. The optical distribution system comprises 150 m of vacuum tubing with 25 cm effective diameter (planar and refocusing) mirrors. A robust yet cost efficient realization taking boundary conditions on optical beam parameters at diagnostics station and user stations into account is foreseen.

Involved research facilities

Related publications

  • Poster
    31st International Free Electron Laser Conference 2009, 23.-28.08.2009, Liverpool, UK
  • Contribution to proceedings
    31st International Free Electron Laser Conference 2009, 23.-28.08.2009, Liverpool, UK

Permalink: https://www.hzdr.de/publications/Publ-15289