Modulation of Adrenal Aldosterone Release by Oxidative Modification of Low-Density Lipoprotein


Modulation of Adrenal Aldosterone Release by Oxidative Modification of Low-Density Lipoprotein

Ansurudeen, I.; Pietzsch, J.; Graessler, J.; Ehrhart-Bornstein, M.; Saha, S.; Bornstein, S. R.; Kopprasch, S.

BACKGROUND
Serum aldosterone is a causative factor for various metabolic and cardiovascular disorders. Low-density lipoprotein (LDL) is a major cholesterol source for aldosterone steroidogenesis; however, the effect of oxidative modification of LDL on aldosterone release is not known. We studied the effect of hypochlorite-oxidized LDL (oxLDL) on adrenal aldosterone secretion.
METHODS
LDL (native LDL (natLDL)) was obtained from healthy volunteers and oxidatively modified in vitro. NCI-H295R cells were stimulated with natLDL and oxLDL, and the aldosterone release was quantified by radioimmunoassay. Molecular changes were studied with western blot analysis and quantitative RT-PCR analysis.
RESULTS NatLDL and oxLDL caused dose-dependent increase in aldosterone release up to threefold. However, the stimulatory effects of modified LDL on aldosterone secretion decreased with increasing degree of LDL oxidation. 24-h incubations with natLDL, mild- and medium-oxidized LDL sensitized the adrenocortical cells to subsequent angiotensin II (Ang II) stimulations by 2.9-, 2.8-, and 2.5-folds, respectively. Heavily oxidized LDL did not sensitize the cells to Ang II stimulations to a similar extent. At the molecular level, the ERK pathway was activated within a minute by both natLDL and oxLDL; however, oxLDL showed a stronger (2.75-fold at 1 and 15 min) and longer (15 min) activation of ERK than natLDL (twofold).
CONCLUSIONS This study demonstrates the following: (i) both natLDL and hypochlorite-oxidized LDL utilize ERK pathway to mediate aldosterone release; (ii) mildly oxidized LDL sensitizes the adrenocortical cells to further stimulations by Ang II similar to natLDL that may have a role in pathological processes; (iii) extensive LDL oxidation counteracts adrenocortical aldosterone release.

Involved research facilities

  • PET-Center

Permalink: https://www.hzdr.de/publications/Publ-15324