Vector-Magneto-Optical Generalized Ellipsometry applied to magnetically anisotropic multilayer and metamaterial samples


Vector-Magneto-Optical Generalized Ellipsometry applied to magnetically anisotropic multilayer and metamaterial samples

Mok, K.; Du, N.; Schmidt, H.

Magneto-optical generalized ellipsometry is the most general approach to characterize the magneto-optical response of magnetically anisotropic materials [1]. We extended this experimental approach to Vector-Magneto-Optical Generalized Ellipsometry (VMOGE) in the IR-UV spectral range, by combining a generalized spectroscopic ellipsometer with a 3D vector magnet [2]. VMOGE measures the upper 3 x 4 submatrix of the 4 x 4 Mueller matrix in a magnetic field of arbitrary orientation and magnitude up to 0.4 T at room temperature. Searching the best match model between experimental and calculated VMOGE data, the complex-valued magneto-optical dielectric tensor is determined. Comparison with vector magnetometry measurements can provide the complex and anisotropic magneto-optical coupling constant Qx, Qy, Qz. We have determined the wavelength dependence of the isotropic Qx and Qy of ferromagnetic Co, Fe, and Ni films. Besides, VMOGE is also employed to study Co nanowires [3] with very strong anisotropic optical response. Having knowledge of the magneto-optical coupling constant Q, one can design magneto-optical devices, e.g., ferromagnetic thin film and nanowire structures, with a strong magneto-optical response for a selected wavelength.

[1] D. Schmidt, T. Hofmann, C.M. Herzinger, E. Schubert, and M. Schubert, Appl. Phys. Lett. 96 (2010) 091906.
[2] K. Mok et al. ‘Vector-Magneto-Optical Generalized Ellipsometry’, Rev. Sci. Instrum., submitted
[3] M. Ranjan et al. ‘Optical properties of silver nanowire arrays with 35 nm periodicity’ Optics Letters 35 (2010) 2576.

Keywords: Mueller matrix; generalized ellipsometry; ferromagnetic; magneto optics

  • Lecture (Conference)
    6th workshop ellipsometry, 21.-24.02.2011, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-15408