Direct observation of antiferromagnetically oriented spin vortex states in magnetic multilayer elements


Direct observation of antiferromagnetically oriented spin vortex states in magnetic multilayer elements

Wintz, S.; Strache, T.; Körner, M.; Fritzsche, M.; Markó, D.; Mönch, I.; Mattheis, R.; Raabe, J.; Quitmann, C.; McCord, J.; Erbe, A.; Fassbender, J.

We report on the coupling of spin vortices in magnetic multilayer elements. The magnetization distribution in thin film disks consisting of two ferromagnetic layers separated by a nonmagnetic spacer is imaged layer- resolved by using x-ray microscopy. We directly observe two fundamentally different vortex coupling states, namely antiferromagnetic and ferromagnetic orientation of the flux directions. It is found that these states are predetermined for systems that involve a sufficiently strong interlayer exchange coupling, whereas for the case of a purely dipolar interaction both states are transformable into each other.

Keywords: magnetic vortex; vortex coupling; magnetic multilayer; magnetic microscopy

  • Applied Physics Letters 98(2011), 232511

Permalink: https://www.hzdr.de/publications/Publ-15433