Synthesis and evaluation of THIQ based indoles as potential PET radioligands for imaging the serotonin transporter


Synthesis and evaluation of THIQ based indoles as potential PET radioligands for imaging the serotonin transporter

Funke, U.; Ben-Daniel, R.; Scheunemann, M.; Fischer, S.; Hiller, A.; Rühl, T.; Deuther-Conrad, W.; Patt, M.; Mishani, E.; Steinbach, J.; Sabri, O.; Brust, P.

Objectives: The serotonin transporter (SERT) is crucial for the regulation of the synaptic concentration of serotonin and is a primary target in the development of antidepressants. To provide access to new efficient ligands for the SERT binding site for PET imaging, N-substituted tetrahydroisoquinoline (THIQ) derivatives both of electron-deficient 3-cyclohexyl and 3-propylindole were selected as lead. Thus, cis-5-cyanoindole-3-yl cyclohexylamine (CFPI, Ki,hSERT = 6.2 nM) labelled with fluorine-18 [1] and the 5-fluoroindole-3-yl propylamine (FMI, Ki,hSERT = 4.1 nM) labelled with carbon-11 [2] were developed as new PET-agents. Here we report on the labelling of CFPI and FMI, and the evaluation of both radiotracers in vivo.
Methods: [18F]CFPI was synthesized via nucleophilic etherification of the corresponding tetrahydroisoquinolin-6-ol with 1-[18F]fluoro-2-tosyloxyethane ([18F]FETos) as secondary labelling agent. It was obtained by a two-step process followed by semipreparative HPLC purification with an overall RCY of 13±7% (decay corrected EOB, total synthesis time 180 min). [11C]FMI was synthesized similarly by an etherification process of the corresponding tetrahydroisoquinolin-6-ol with [11C]CH3I to yield the product with RCY 10±4% (decay corrected EOB, total synthesis time 27 min). The brain uptake kinetics and the target specicficity of [18F]CFPI was investigated in female CD-1 mice by organ distribution at 5, 30, 60, and 120 min p.i., and blocking studies at 60 min p.i. (n=4 per time point). The distribution of [11C]FMI in the brain of juvenile pig was assessed by dynamic PET imaging under baseline and consecutively blocking conditions (n=2). Pre-treatment with citalopram (5 mg/kg) as selective SERT ligand was used to asses the specificity of the binding of [11C]FMI. For comparison, [11C]DASB was investigated in an additional animal.


Results: Radiotracers were obtained in radiochemical purity of ≥99%, with specific activity of 1500 GBq/µmol for [11C]FMI and 150 GBq/µmol for [18F]CFPI. PET scans were performed after i.v. injection of 0.5 – 1 GBq [11C]FMI. In comparison to [11C]DASB with a midbrain-to-cerebellum ratio of 2 at 120 min p.i., [11C]FMI displayed no specific accumulation in SERT-relevant regions (midbrain-to-cerebellum ratio ~1 at 120 min p.i.). Furthermore, pre-tretament with citalopram did not affect the uptake of [11C]FMI in different brain regions as observed by the time activity curves. Comparable results were obtained in biodistribution studies on [18F]CFPI. After i.v. injection of ~ 300 kBq [18F]CFPI, brain-to-plasma ratios of <1 were determined at each time up to 120 min p.i. Low clearance from the brain and other organs implies a high non-specific binding. Pre-treatment with citalopram was without effect on the activity distribution or elimination route of [18F]CFPI.
Conclusions: The in vivo data obtained for [11C]FMI in pig brain and [18F]CFPI in mice indicate a high non-specific binding of the two radiolabelled N-substituted THIQ derivatives. Therefore, both [11C]FMI and [18F]CFPI are not suitable as SERT-selective PET radioligands.
Research Support: Work was supported by DFG, BMBF and Joint German-Israeli Research Program (MOST #1888).
References: [1] Funke, U. et al. (2008), Biorg. Med. Chem. Lett. 18, 4727-3047, [2] Ben-Daniel, R. et al. (2008) Biorg. Med. Chem. 16, 6364-6370.

  • Poster
    ISRS2011, 28.08.-02.09.2011, Amsterdam, The Netherlands
  • Abstract in refereed journal
    Journal of Labelled Compounds and Radiopharmaceuticals 54(2011)1, 284-284
    ISSN: 0362-4803

Permalink: https://www.hzdr.de/publications/Publ-15711