First in man study with the new radioligand (-)-[18F]-norchloro-fluoro-homoepibatidine (NCFHEB) to image alpha4beta2 cerebral nicotinic acetylcholine receptors (nAChRs) in early Alzheimer’s disease (AD) with PET


First in man study with the new radioligand (-)-[18F]-norchloro-fluoro-homoepibatidine (NCFHEB) to image alpha4beta2 cerebral nicotinic acetylcholine receptors (nAChRs) in early Alzheimer’s disease (AD) with PET

Sabri, O.; Wilke, S.; Gräf, S.; Lengler, U.; Gertz, H.-J.; Schönknecht, P.; Habermann, B.; Becker, G.; Luthardt, J.; Patt, M.; Kendziorra, K.; Meyer, P.; Hesse, S.; Barthel, H.; Wagenknecht, G.; Höpping, A.; Hegerl, U.; Brust, P.

Using 2-[18F]F-A85380 (2FA) PET we recently demonstrated significant cerebral nAChR declines in early AD which correlated significantly with the loss of cognitive function [1]. However, 2FA is not well suited in routine use because of slow kinetics, acquisition times up to 7 hours, and limited nAChR selectivity. Thus, we developed the new tracer NCFHEB [2] and report here on the worldwide first human NCFHEB-PET results.

6 mild AD patients (NINCDS-ADRDA, age 76.7±5.9, MMSE 23.8±3.0) and 5 age-matched healthy controls (HCs, MMSE 28.4±1.1), all nonsmokers and naïve for central acting medication, underwent NCFHEB-PET (370 MBq, 3D-acquisition, ECAT Exact HR+). Dynamic 0-270min p.i. scans were acquired and corrected for motion (SPM2). Kinetic modeling was applied to 29 brain VOI-based tissue-activity curves (VOIs defined on individual MRI) using a one-tissue compartment model with measured arterial input function. Total distribution volume (DV) and binding potential (BP, reference region: corpus callosum) were used to characterize specific binding.

Image quality of NCFHEB scans was clearly superior to 2FA, and a 20 minutes scan already adequate for visual analysis. All 29 regions were well described with one-tissue compartment. PET data acquired over only 90 minutes were sufficient to estimate all kinetic parameters precisely indicating a fast receptor binding kinetic (much faster than for 2FA). DVs in HCs increase as expected with receptor density: Corpus callosum (DV: 4.81±0.32), posterior cingulate (8.92±0.66), temporal (9.03±0.44), pons (11.00±1.19), thalamus (24.32±2.96). The AD patients showed extensive BP reductions in frontal, parietal, temporal, anterior and posterior cingulate cortices, caudate, and hippocampus (all p<0.05) compared to HCs.

Due to the significant shorter acquisition time and superior image quality NCFHEB appears to be a much more valuable tracer than 2FA to image nAChRs in humans. Early AD patients show significant declines of nAChRs in brain regions typically affected by AD pathology. These results indicate that NCFHEB-PET has a great potential as a biomarker for early AD diagnosis.

References:

1. Kendziorra et al., Eur J Nucl Med Mol Imaging 2010
2. Brust et al., Synapse 2008

This trial is granted by the German Federal Ministry of Education and Research (Nr. 01EZ0820)

  • Lecture (Conference)
    EANM'11 Annual Congress of the European Association of Nuclear Medicine, 15.-19.10.2011, Birmingham, United Kingdom
  • Abstract in refereed journal
    European Journal of Nuclear Medicine and Molecular Imaging 38(2011), S122-S123

Permalink: https://www.hzdr.de/publications/Publ-15815