Hydrogen desorption properties of melt-spun and hydrogenated Mg-based alloys using in situ synchrotron X-ray diffraction and TGA


Hydrogen desorption properties of melt-spun and hydrogenated Mg-based alloys using in situ synchrotron X-ray diffraction and TGA

Kalinichenka, S.; Röntzsch, L.; Baehtz, C.; Weißgärber, T.; Kieback, B.

Three magnesium-based alloys, Mg90Ni10, Mg80Ni10Y10 and Mg85Cu5Ni5Y5, were prepared by melt-spinning and compared regarding their hydrogen desorption properties.Their hydrogen desorption kinetics after activation and hydrogenation was investigated by thermogravimetry at different temperatures in the range from150 °C to 250 °C. It was found that Mg80Ni10Y10 exhibits a much faster desorption kinetics in comparison toMg90Ni10 and Mg85Cu5Ni5Y5 of upto1.3wt.%-H2/min. The corresponding crystal phase transformations were investigated in detail by insitu synchrotron X-ray diffraction. It was found that the kinetics of hydrogenation is controlled by different reaction pathways for Mg90Ni10, Mg80Ni10Y10 and Mg85Cu5Ni5Y5.

Keywords: Hydrogen storage material; Metal hydride; Magnesium alloy; Mg; Ni; Cu; Y; Melt spinning; Nanocrystallinity; Dehydrogenation kinetics; In situ synchrotronX-ray diffraction

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-15845