In-situ study of growth of carbon nanotube forests on conductive CoSi(2) support


In-situ study of growth of carbon nanotube forests on conductive CoSi(2) support

Bayer, B.; Zhang, C.; Blume, R.; Yan, F.; Fouquet, M.; Wirth, C.; Weatherup, R.; Lin, L.; Baehtz, C.; Oliver, R.; Knop-Gericke, A.; Schlogl, R.; Hofmann, S.; Robertson, J.

The growth of high density vertically aligned carbon nanotube forests on conductive CoSi(2) substrate layers is characterized by in situ x-ray photoemission spectroscopy and x-ray diffraction. We use in situ silicidation to transform as loaded, low conductivity CoSi supports to highly conductive CoSi(2) during nanotube growth. These cobalt silicide films are found to be stable against oxidation and carbide formation during growth and act as an excellent metallic support for growth of aligned nanotubes, resembling the growth on the insulating Fe/Al(2)O(3) benchmark system. The good catalytic activity is attributed to interfacial reactions of the Fe catalyst particles with the underlying CoSi(2) support. We obtain ohmic conduction from the support layer to the carbon nanotube forest.

Keywords: RAY PHOTOELECTRON-SPECTROSCOPY; CHEMICAL-VAPOR-DEPOSITION; INTEGRATED-CIRCUITS; CATALYST-SUPPORT; OHMIC CONTACTS; SILICIDES; FUTURE; IRON; INTERCONNECTS; NANOPARTICLES

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-15851