Nickel-related defects in ZnO – A deep-level transient spectroscopy and photo-capacitance study


Nickel-related defects in ZnO – A deep-level transient spectroscopy and photo-capacitance study

Schmidt, M.; Brachwitz, K.; Schmidt, F.; Ellguth, M.; von Wenckstern, H.; Pickenhain, R.; Grundmann, M.; Brauer, G.; Skorupa, W.

Electronic defects in nickel-doped zinc oxide thin films have been investigated by means of capacitance spectroscopy. The samples were grown by pulsed laser deposition on a-plane sapphire substrates. Nickel was introduced into the films (a) during growth and (b) by implantation of Ni ions and subsequent thermal annealing. From deep-level transient spectroscopy it was concluded that a nickel-related trap, TNi2, with an energy level approximately 540 meV below the conduction band edge was formed. Photo-capacitance (PCAP) measurements performed on the nickel-implanted sample proved the existence of a further nickel-related trap, TNi1, in the midgap. The photo-ionisation cross-section spectra of this state were calculated from the PCAP transients and gave evidence that TNi1 and TNi2 are two levels of the same defect, TNi, which is possibly nickel on a tetrahedral lattice site. A model for TNi is proposed.

Keywords: ion implantation; zinc oxide; nickel; deep-level transient spectroscopy; photo-capacitance; pulsed laser deposition

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-15853