Thin film intermetallic compound formation by flash-lamp annealing: an implication of ultra-fast alloying and metallurgy


Thin film intermetallic compound formation by flash-lamp annealing: an implication of ultra-fast alloying and metallurgy

Yankov, R. A.; Kolitsch, A.; von Borany, J.; Munnik, F.; Voelskow, M.; Schumann, T.; Skorupa, W.; Donchev, A.; Schütze, M.

Experiments have been undertaken to explore the possibility of rapidly melting and alloying thin metal films by flashlamp annealing (FLA). Aluminum layers of a thickness of 100 to 500 nm have been deposited on α-titanium substrates by magnetron sputtering. The structures have then been heat-treated by FLA in air using flash duration of 20 msec, energy density of 60 to 100 J/cm2, and maximal temperature of 800 to 1660°C. X-ray diffraction (XRD) and elastic recoil detection analysis (ERDA) have been used for sample characterization. The as-deposited Al films are amorphous/nanocrystalline (grain size ~ 5 nm) in nature. Heat treatment by FLA has been found to produce an intermetallic TiAl3 phase. For comparison, under conditions of standard furnace annealing, the formation of this compound in the thin film reaction of Al and Ti necessitates anneal temperatures and times typically in excess of 400°C and 1 h, respectively. Furthermore, the intermetallic TiAl3 phase formed by FLA appears to be present in a region extending from the surface to a depth of a few hundred nm. Importantly, no pure Al phase has been detected either at the surface or in the substrate bulk. XRD measurements have also identified negligibly small amounts of Al and Ti oxide phases. It is expected that one may obtain TiAl phases other than TiAl3 by varying both the film composition (i.e. by co-depositing Al and Ti instead of Al only) and the FLA parameters. The results of this study indicate that FLA of thin metal films is a promising technique for rapid surface alloying and compound formation. For the particular case of the Ti/Al system, t he i ntermetal lc if il ms s o f abricated m ay h ave r el evance t o h igh-temperature m icroel ectronics applications (diffusion barriers, conduction lines etc) as well as to the oxidation protection of titanium and titaniumaluminum alloy surfaces by forming suitable intermetallic TiAl phases.

Keywords: rapid melting and alloying; FLA; intermetallic TiAl3 phase

Involved research facilities

Related publications

  • Lecture (Conference)
    subtherm; International Topical Workshop on Subsecond Thermal Prosessing of advanced Materials, 25.-27.10.2011, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-16269