Self-amplified Cherenkov radiation from a relativistic electron in a waveguide partially filled with a laminated material


Self-amplified Cherenkov radiation from a relativistic electron in a waveguide partially filled with a laminated material

Grigoryan, L. S.; Mkrtchyan, A. R.; Khachatryan, H. F.; Arzumanyan, S. R.; Wagner, W.

The radiation from a relativistic electron uniformly moving along the axis of cylindrical waveguide filled with laminated material of finite length is investigated. Expressions for the spectral distribution of radiation passing throw the transverse section of waveguide at large distances from the laminated material are derived with no limitations on the amplitude and variation profile of the layered medium permittivity and permeability.
Numerical results for layered material consisting of dielectric plates alternated with vacuum gaps are given. It is shown that at a special choice of problem parameters, Cherenkov radiation generated by the relativistic electron inside the plates is self-amplified. The visual explanation
of this effect is given and a possible application is discussed.

Keywords: Cherenkov radiation; relativistic particle; waveguide; periodic medium

Permalink: https://www.hzdr.de/publications/Publ-16518