Relaxation dynamics in graphene close to the Dirac point


Relaxation dynamics in graphene close to the Dirac point

Winnerl, S.; Schneider, H.; Helm, M.; Orlita, M.; Plochocka, P.; Kossacki, P.; Potemski, M.; Winzer, T.; Malic, E.; Knorr, A.; Sprinkle, M.; Berger, C.; de Heer, W. A.

The carrier dynamics in epitaxially grown graphene is studied in pump-probe experiments with photon energies in the range from 10 – 250 meV. A strong increase of the relaxation time is observed as the photon energy is decreased to values below the optical phonon energy. The underlying processes dominating the relaxation are identified by a comparison of the experimental results with microscopic calculations. Variation of the photon energy between 20 meV and 30 meV results in a change from induced transmission for larger photon energies to induced absorption for lower photon energies. An interplay of interband and intraband processes is responsible for this behavior.

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    International Symposium on THz nanoscience (TeraNano 2011), 24.-25.11.2011, Osaka, Japan

Permalink: https://www.hzdr.de/publications/Publ-16522