XAS/XMCD studies of Ga+ irradiation driven magnetization reorientation in Pt/Co/Pt nanostructures


XAS/XMCD studies of Ga+ irradiation driven magnetization reorientation in Pt/Co/Pt nanostructures

Mazalski, P.; Maziewski, A.; Liedke, M. O.; Fassbender, J.; Ferré, J.; Mougin, A.; Baczewski, L. T.; Wawro, A.; Rogalev, A.; Wilhelm, F.

The magnetic properties of ultrathin films are usually tuned by the varying film thickness, chemical composition or structure (see e.g. [1,2]). It has been demonstrated that the magnetic properties of thin films with perpendicular magnetic anisotropy of interfacial origin may be also tuned by ions irradiation [3]. A Pt/Co/Pt trilayer irradiated by different ions exhibits an out-of-plane to in-plane magnetization reorientation phase transition. Moreover, an ion irradiation-driven intermixing and disordering at the Co–Pt interfaces was shown to lead to a reduction of the anisotropy, coercivity, and Curie temperature.
In our recent paper [4] we presented new effect - remarkable oscillation of the magnetic anisotropy in the Pt/Co(2.6 nm)/Pt (deposited by sputtering technique) induced by an uniform low fluence Ga+ ion irradiation at 30 keV. Increasing fluence F magnetization rotates from in-plane to out-of-plane state and then back to in-plane state. Similar effect, driven by Ga+ ion irradiation, has been recently observed in Pt/Co/Pt deposited by molecular beam epitaxy.
The key question is the origin of observed out-of-plane magnetization state induced by ions irradiation. Ion irradiation driven creation of strongly anisotropic Co-Pt L10 phase is proposed. This hypothesis is supported by measurement of K-edge X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) on the ID12 ERSF beamline. The study was done on: Pt/Co/Pt samples both as deposited film and irradiated one with fluence creating out-of-plane magnetization state, reference sample - L10 Co0.5Pt0.5 thin film. The XMCD spectrum of the irradiated sample is interpreted as the superposition of pure Co and L10 CoPt alloy contributions. TRIDYN [5] simulations, for different Ga ion fluence, were performed for results discussion.
This work was supported by the following projects: SPINLAB - EU programme Innovative Economy, Priority 2.2, SPIRIT European Community - contract no. 227012, ESRF/73/2006.
References
[1] - M. Kisielewski et al., Phys. Rev. Lett. 89, 87203 (2002)
[2] - A. Stupakiewicz et al., Phys. Rev. Lett. 101, 217202 (2008)
[3] - C. Chappert et al., SCIENCE 280, 1919 (1998)
[4] - J. Jaworowicz et al., Appl. Phys. Lett. 95, 022502 (2009)
[5] - W. Möller et al., Comp. Phys. Commun. 51, 355 (1988).

Keywords: XAS/XMCD studies of Ga+ irradiation driven magnetization reorientation in Pt/Co/Pt nanostructures

Involved research facilities

Related publications

  • Lecture (Conference)
    ESRF Users' Meeting 2012, 06.-09.02.2012, Grenoble, France

Permalink: https://www.hzdr.de/publications/Publ-16535