Intra-excitonic extreme nonlinear optics


Intra-excitonic extreme nonlinear optics

Teich, M.; Wagner, M.; Stehr, D.; Schneider, H.; Helm, M.; Chatterjee, S.; Gibbs, H.; Khitrova, G.

A fundamental problem in light-matter interaction is the coupling of an intense, monochromatic electromagnetic wave with a quantum mechanical two-level system. One effect related to this is the Autler-Townes or AC Stark effect. Originally observed and described in molecular spectroscopy the effect refers to a splitting of an energy level that is resonantly coupled via intense radiation to an adjacent level, i.e. the states get ”dressed” by the light-matter interaction. We investigate this effect using a free-electron laser (FEL) driven intra-excitonic transition between the 1s and 2p states in a semiconductor multiple quantum well .We have observed distinct intensity- and wavelengthdependent Rabi sidebands of the heavy-hole hh(1s) exciton line when the FEL was tuned around the 1s-2p transition. We also present measurements at higher electric fields exploring the regime beyond the rotating-wave approximation.

Keywords: Quantum well; Exciton; THz; FEL

Involved research facilities

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung, Abteilung Kondensierte Materie, 25.-30.03.2012, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-17029