Multifunctional Oxides – Modifying the Ferroic Properties by Defects due to Irradiation, Doping and Annealing


Multifunctional Oxides – Modifying the Ferroic Properties by Defects due to Irradiation, Doping and Annealing

Gemming, S.; Weissbach, T.; Zschornak, M.; Stöcker, H.; Meyer, D. C.; Leisegang, T.; Ronneberger, I.; Potzger, K.

Transition metal oxides exhibit a wealth of physical phenomena, among them ferroic properties such as ferroelasticity, ferroelectricity and ferromagnetism, or their combination in multiferroics. In addition, transition metal oxides are sensitive to the chemical environment via the oxygen partial pressure or ion irradiation; changes induce stoichiometry deviations, which cause conductivity changes and modify the ferroic characteristics. Ternary and quaternary compounds from the perovskite family will be discussed as examples, which correlate local changes due to point and planar defects with changes of the elastic, polarization and magnetic properties. The microscopic interactions are determined by density functional calculations, which yield the basis for more large-scale simulations with effective Hamiltonian approaches. Under oxygen-poor conditions, oxygen vacancies in SrTiO3 accumulate in an external electric field and reduce the hardness. In an Sr/O-rich environment the phases SrO(SrTiO3)n are formed, which yield a distinct change of the X-ray reflectivity due to the regular arrangement of extrinsic SrO(001) stacking faults. YMn2O5 has a series of complex antiferromagnetic phases in coexistence with ferroelectricity. In YFeMnO5, only one commensurable ferrimagnetic phase was found and ferroelectricity is absent. Based on spin-polarized DFT calculations a Heisenberg model yields the coupling constants of the Fe-substituted and the mangenese-only compounds and relates them to crystal-field interactions. Finally, BiFeO3 will be addressed, which is a rhombohedral multiferroic with several domain wall configurations, which exhibit specific magnetic and conductance properties.

Keywords: oxide; DFT; density-functional; multiferroic; bismuth ferrite; manganite; titanate

  • Invited lecture (Conferences)
    MRS Spring Meeting, 09.-13.04.2012, San Francisco, U.S.A.

Permalink: https://www.hzdr.de/publications/Publ-17342