Band gap tuning of carbon nanotubes for sensor and interconnect applications — A quantum simulation study


Band gap tuning of carbon nanotubes for sensor and interconnect applications — A quantum simulation study

Zienert, A.; Gemming, S.; Schuster, J.; Schulz, S. E.; Gessner, T.

Carbon nanotubes (CNTs) are a promising material for novel sensor and interconnect applications. In both cases, the device performance depends strongly on the electronic properties of the tubes. Methods for tuning the electronic structure and especially the band gap are highly desirable. A computational study of cobalt decorated CNTs, by means of density functional theory, reveals that very few cobalt atoms can have a significant impact on the electronic structure, turning semiconducting CNTs into the metallic state. This is further verified by quantum transport simulations. The influence of different amounts of cobalt is also investigated.

Keywords: CNT; nanotube; density-functional; transport; nanoelectronic

  • Contribution to proceedings
    9th International Multi-Conference on Systems, Signals and Devices (SSD), 20.-23.03.2012, Chemnitz, Deutschland
    Systems, Signals and Devices: IEEE, 978-1-4673-1590-6

Permalink: https://www.hzdr.de/publications/Publ-17345