Release of helium from vacancy defects in yttria-stabilized zirconia under irradiation


Release of helium from vacancy defects in yttria-stabilized zirconia under irradiation

Ou, X.; Kögler, R.; Zhou, H.; Anwand, W.; Grenzer, J.; Hübner, R.; Voelskow, M.; Butterling, M.; Zhou, S.; Skorupa, W.

Fission gas retention or release has a critical impact on the function of advanced nuclear materials. Helium trapping in, and release from, radiation defects induced by neutrons and by α decay in YSZ (yttria-stabilized zirconia) is experimentally simulated using synchronized Zr+ and He+ dual ion beam irradiation. The measured damage profiles consist of two peaks which agree well with the calculated profiles of implantation induced excess point defects. This special implantation related effect has to be carefully considered in the evaluation of experimental investigations which simulate isotropic irradiation effects such as α decay. First-principles calculations show that helium is energetically favorable to be trapped by Zr vacancies in YSZ. Implanted helium alone in YSZ is accumulated in undesirable helium bubbles and results in local surface swelling and lift-off. However, under dual beam irradiation helium is released from vacancy defects and is out-diffused at room temperature. Helium is mobilized by a vacancy-assisted trapping/detrapping mechanism induced by the simultaneous Zr+ ion implantation. This behavior avoids the deleterious helium bubble formation and contributes to the suitable application characteristics of YSZ which result in its excellent radiation hardness.

Keywords: yttria-stabilized zirconia; dual beam irradiation; He release; “½Rp” effect

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-17590