Investigation of gas-liquid two-phase flow in multiphase contactor using low-intrusive measuring methods


Investigation of gas-liquid two-phase flow in multiphase contactor using low-intrusive measuring methods

Zheng, G.; Schlusemann, L.; Schubert, M.; Hampel, U.; Gruenewald, M.

Multiphase contactors are the most important apparatuses for reaction and separation in chemical engineering. Limited by the measuring methods, the analysis of their hydrodynamic behavior is usually done using superficial liquid and gas flow velocities. Several new measuring techniques for the investigation of multiphase flows in vessel cross sections have been developed in the last decades. Especially the use of tomographic visualization techniques is of great interest since these are noninvasive and thus non-intrusive methods, and enable the visualization of phase distributions.
However, currently developed nonintrusive methods have considerable drawbacks. The computer tomography methods can obtain high spatial resolution. In comparison, the temporal resolution is relative low. For the application of topographic measurement techniques in multiphase flows, especially with fast changing flow patterns, a high temporal resolution is essential. Electrical tomography has a high temporal resolution. However, reconstruction algorithm is complex and the electrical field lines are not linear, therefore spatial resolution rate is relative low. Therefore, no exact mass balance could be established and the resulting phase fractions cannot be applied for model developments.

  • Lecture (Conference)
    AIChE Annual Meeting, 28.10.-02.11.2012, Pittsburgh, USA

Permalink: https://www.hzdr.de/publications/Publ-17616