Universal Presence of Elements – still a valid concept?


Universal Presence of Elements – still a valid concept?

Renno, A. D.

In 1936 Ida Noddack published her landmark paper “Über die Allgegenwart der chemischen Elemente” – in English „About Universal presence of Elements“ (Noddack, 1936). In this article she states: “Alle chemischen Elemente kommen in allen Mineralien vor.“ – in English: „All chemical elements are present in all minerals.” This conclusion was based in the painstaking trace element analysis of bulk minerals. She was able to document the presence of such chemical elements as Re in sphalerite down to 10 ppb (Noddack, 1936).
It was, of course impossible for her to anticipate the development of modern microanalytical instrumentation, which is able to operate routinely at the picogram test portion range.
The Helmholtz- Institute Freiberg for Resource Technology is currently working to establish the Super-SIMS method (Döbeli et al, 1994) for analysis of minerals, ores and other materials related to resource technology. The extreme sensitivity of this technique raises the question of the validity of the concept of Universal Presence of Elements. It is expected that the Super-SIMS we will be able to quantify some elements down to the 1 ng/g level (10-12 atoms/atoms) in ideal matrices. Using a commercial available ion probe we will be able to focus the ion beam down to 2 µm in diameter, equivalent to a sampling mass at or below the sub-ng level.
Simulations of the probabilities of finding elements of interest at such low target concentrations show that the Super-SIMS will reach the point that the chance of measuring these elements in such small sampling volumes will be less than 10 %.This leads to a number of new questions which need to be addressed when addressing the topic of a given element yes-or-no. Is the amount of an ultratrace element in a mineral determined by the concentration in the bulk mineral or by the analytical capabilities?
Is it still possible to describe the geochemical behavior of ultratrace elements if the probability of detection of such elements in very tiny volumes approaches zero?
What are the driving forces behind the geochemical behavior of such ultratrace elements?
We hope that the new Super-SIMS facility will help to answer such question in the not too distant future.

References:

Döbeli M., Nebiker P.W., Suter M., Synal H.A., Vetterli D. (1994) „Accelerator SIMS for trace element detection. In: Nucl Instr Meth B85:770–774.
Noddack, I. (1936) “Über die Allgegenwart der chemischen Elemente” in: Angewandte Chemie, Vol. 49(47), pp. 835-854)

Keywords: Geochemistry; Super-SIMS; Universal Presence of Elements; Ultratrace Element; Analytical Geochemistry

Involved research facilities

Related publications

  • Lecture (Conference)
    GEOANALYSIS 2012 - The 8th International Conference on the Analysis of Geological and Environmental Materials, 16.-20.09.2012, Búzios, Rio de Janeiro, Brasilien

Permalink: https://www.hzdr.de/publications/Publ-17708