Time-resolved photoluminescence quenching by intra-excitonic transitions in presence of external magnetic field


Time-resolved photoluminescence quenching by intra-excitonic transitions in presence of external magnetic field

Bhattacharyya, J.; Zybell, S.; Helm, M.; Schneider, H.; Andrews, A. M.; Strasser, G.; Schneebeli, L.; Böttge, C. N.; Breddermann, B.; Chatterjee, S.; Kira, M.; Koch, S. W.

We present our experimental results on the excitation and manipulation of intra-excitonic transitions in semiconductor quantum wells. We performed time resolved photoluminescence (PL) quenching measurements on a GaAs/AlGaAs multiple QW sample. The excitons were generated by near infrared pulsed laser excitation and intraexcitonic 1s-2p transition was induced by THz laser pulses resonant to the 1s-2p energy separation. We used the free electron laser at Helmholtz-Zentrum Dresden-Rossendorf as the THz source. Due to the population transfer from the 1s to the 2p, the PL intensity at 1s energy decreased abruptly during the incidence of the THz pulse. Such quenching of PL has been reported earlier for intersubband excitations [1].

Interestingly, a simultaneous increase in the PL is observed around the 2p energy. Since radiative recombination is forbidden for the 2p state the enhancement of the PL intensity at higher energy is attributed to emission from the 2s excitonic state, which is nearly degenerate with the 2p state. This implies an appreciable transfer of carriers from 2p to 2s state. This has been predicted in theory [2] and is explained to result from Coulomb scattering. Time resolved measurements allowed us to estimate the time-constants related to the carrier dynamics involved in this 2p-2s transfer. We were also able to control the 2s-2p carrier transfer by an external magnetic field. The energy separations between excitonic levels increase with increasing magnetic field [3]. We employ this effect to reduce the 2p-2s carrier transfer observed as a decrease in the THz induced 2s emission. We can practically switch off this transfer by a magnetic field of about 2.5 T. We will also present a comparison of the experimental data with a microscopic theory which includes Coulomb induced excitonic scattering.

References
1) S. Zybell, et. al., Appl. Phys. Lett. 99, 041103 (2011)
2) M. Kira, et. al. Phys. Rev. Lett. 93, 076402 (2004)
3) H. A. Nickel, et. al. Phys. Rev. B 62, 2773 (2000)

Keywords: Magneto-photoluminescence; free electron laser; intraexcitonic transitions

Involved research facilities

Related publications

  • Lecture (Conference)
    11th International Workshop on Nonlinear Optics and Excitation Kinetics in Semiconductors, 23.-27.09.2012, Stuttgart, Germany

Permalink: https://www.hzdr.de/publications/Publ-17910