Target water for F-18 production: Recover – Renew – Reuse


Target water for F-18 production: Recover – Renew – Reuse

Rötering, S.; Franke, K.; Brust, P.; Fischer, S.; Steinbach, J.

Ziel
Proton irradiation of H2[O-18]O-water is a standard method for F-18 production. Due to the limited availability of O-18 water and increasing costs, its re-use for research purposes gets more and more important. We present two purification methods for the removal of organic contaminants from used target water. The recycled target water is characterized by production yields, radionuclide purity and the use in radiosyntheses.
Methodik
Oxidation of the organic contaminants in the target water was tested with photo-oxidation (254 nm) [1] and a chemical method using KMnO4 as oxidation agent validated by gas chromatography, ICP-OES and pycnometry. Target irradiations were done at similar beam parameters (11.7 DAh) at a CYCLONE 18/9 (IBA, target: 2 mL). Radionuclide purity and yield were determined by a well counter (MED) and gamma spectrometry (ORTEC). Produced F-18 was used in nucleophilic substitution reactions.
Ergebnisse
Both purification methods allow a comparable decrease of organic contaminants from 400 ppm ethanol and 44 ppm acetone to 10 ppm-50 ppm ethanol. The parameters (amount of oxidation agent, temperature, treatment time) for the purification methods were established, allowing comparable irradiation and radiosyntheses as for the original target water. We observed a loss of the production yield (19 %) due to a lower O-18 concentration but no significant influence on the radionuclide purity or radiochemistry.
Schlussfolgerungen
Both methods enable a multiple cycling of target water for the successful production and application of F-18 for research purposes, whereas photo-oxidation is faster. However, the required amount of F-18 limits the cycling process.
For 83 % O-18 enrichment in H2[O-18]O water after one cycle starting from 87 % we achieved reasonable production yields which allow an efficient economical usage of the target water, including the minimization of the target water contamination in the re-collection process.
Literatur
1. Gebrauchsmuster DE 29504388 U1, Forschungszentrum Jülich GmbH, 1995

  • Lecture (Conference)
    NuklearMedizin 2013, 17.-20.04.2013, Bremen, Deutschland
  • Abstract in refereed journal
    Nuklearmedizin 2(2013)52, V29
    ISSN: 0029-5566

Permalink: https://www.hzdr.de/publications/Publ-17942