Spin dynamics of the S = 5/2 2D triangular antiferromagnet Ba3NbFe3Si2O14


Spin dynamics of the S = 5/2 2D triangular antiferromagnet Ba3NbFe3Si2O14

Choi, K. Y.; Wang, Z.; Ozarowski, A.; van Tol, J.; Zhou, H. D.; Wiebe, C. R.; Skourski, Y.; Dalal, N. S.

We report pulse-field magnetization, ac susceptibility, and 100 GHz electron spin resonance (ESR) measurements on the S = 5/2 two-dimensional triangular compound Ba3NbFe3Si2O14 with the N´eel temperature TN = 26 K . The magnetization curve shows an almost linear increase up to 60 T with no indication of a one-third magnetization plateau. An unusually large frequency dependence of the ac susceptibility in the temperature range of T = 20–100 K reveals a spin-glass behavior or superparamagnetism, signaling the presence of frustration-related slow magnetic fluctuations. The temperature dependence of the ESR linewidth exhibits two distinct critical regimes; (i) ΔHpp(T) α(T-TN)-p with the exponent p = 0.2(1)–0.2(3) for temperatures above 27 K, and (ii) ΔHpp(T) α(T- T)-p with T=12 K and p = 0.8.(1)–0.8(4) for temperatures between 12 and 27 K. This is interpreted as indicating a dimensional crossover of magnetic interactions and the persistence of short-range correlations with a helically ordered state.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-17972