Doping of nanostructure and defect engineering by ion beam implantation and irradiation


Doping of nanostructure and defect engineering by ion beam implantation and irradiation

Ou, X.

This talk will give a brief introduction of my recent works on application of ion implantation and ion irradiation on doping of nanostructure and on defect engineering for nanostructure fabrication and nuclear materials.
Doping of vertical Si nanowires (NWs) is demonstrated here by multi energy ion implantation. The doping behavior of the individual Si NWs was investigated by SSRM. A strong surface segregation of the implanted P in Si was found during the subsequent annealing process, and deactivation of the P also was excepted at the NW surface. A diameter dependence of the local resistivity of the NW cross sections RS increases as the NW diameter decreases and this tendency is significantly enhanced as the diameter is below 25 nm.
The resistive switching (RS) of functional oxide thin films has attracted tremendous interest recently due to its promising application as building blocks in non-volatile memory devices. This work reports a low cost and effective approach to tune the resistive switching behavior of BiFeO3 films which have been deposited by pulsed laser deposition and irradiated with low energy Ar+ ions. Due to the preferential sputtering of BiFeO3 films, oxygen vacancies as well as the surface morphology can be tuned by low energy irradiation in a controllable way to enhance the RS performance.
The dual beam facility in Rossendorf is used for the investigation of the radiation damage in yttria-stabilized zirconia (YSZ) created either by simultaneous implantation of Zr+ & He+ or by separate single beam implantation. The results show that the excitation by the additional Zr+ implantation can activate and enhance the out diffusion of the simultaneously implanted helium. The release of helium.from YSZ substrate, instead to be trapped by implantation induced vacancies generated by the heavy Zr+ ions, avoids the formation and growth of He bubbles.

Keywords: doping and defect engineering

Involved research facilities

Related publications

  • Lecture (others)
    Lecture given in Beihang University and Perking University, 28.09.2012, Beijing, China

Permalink: https://www.hzdr.de/publications/Publ-18251