Flow control during solidification of AlSi-alloys by means of tailored AC magnetic fields and the impact on the mechanical properties


Flow control during solidification of AlSi-alloys by means of tailored AC magnetic fields and the impact on the mechanical properties

Räbiger, D.; Willers, B.; Eckert, S.

This paper presents an experimental study which in a first stage is focused on obtaining quantitative information about the isothermal flow field exposed to various magnetic field configurations. Melt stirring has been realized by utilizing a rotating magnetic field. In a second step directional solidification of AlSi7 alloys from a water-cooled copper chill was carried out to verify the effect of a certain flow field on the solidification process and on the resulting mechanical properties. The solidified structure was reviewed in comparison to an unaffected solidified ingot. Measurements of the phase distribution, the grain size, the hardness and the tensile strength were realized. Our results demonstrate the potential of magnetic fields to control the grain size, the formation of segregation freckles and the mechanical properties. In particular, time–modulated rotating fields show their capability to homogenize both the grain size distribution and the corresponding mechanical properties.

Keywords: elektromagnetic stirring; mechanical properties; solidification

  • Lecture (Conference)
    The 6th International Conference on Solidification and Gravity, 02.-06.09.2013, Miskolc - Lillafüred, Hungary
  • Materials Science Forum 790-791(2014), 384-389
    DOI: 10.4028/www.scientific.net/MSF.790-791.384
    Cited 1 times in Scopus
  • Contribution to proceedings
    The 6th International Conference on Solidification and Gravity, 02.-06.09.2013, Miskolc - Lillafüred, Hungary
    Solidification and Gravity VI: Trans Tech Publications, 978-3-03835-093-4, 384-389

Permalink: https://www.hzdr.de/publications/Publ-19099