GEANT4 Simulationen zur Optimierung einer Compton Kamera für die In-vivo Dosimetrie


GEANT4 Simulationen zur Optimierung einer Compton Kamera für die In-vivo Dosimetrie

Rohling, H.; Enghardt, W.; Hertel, N.; Kormoll, T.; Pausch, G.; Fiedler, F.

Fragestellungen: Zur Qualitätssicherung der Partikelbestrahlungen von Tumorpatienten ist eine nicht-invasive, in-vivo Überwachung wünschenswert. Am OncoRay / TU Dresden / HZDR wird zur Zeit ein Prototyp einer Compton Kamera für die klinische Anwendung entwickelt, die eine solche Überwachung anhand der bildgebenden Messung prompter Gammastrahlung ermöglichen soll [1]. Aufgrund der Vielzahl der zu optimierenden Parameter wie Größe, Abstände und Material der Detektoren, zur Analyse der auftretenden Wechselwirkungen und zur Selektion von Ereignissen sind Monte Carlo Simulationen dabei unerlässlich.

Material und Methoden: Die betrachtete Compton Kamera ist aus einer Streuebene (CZT) und einer Absorberebene (CZT oder LSO) aufgebaut (Abb.1). Das Funktionsprinzip einer Compton Kamera basiert auf der Berechnung des Streuwinkels und damit der Eintreffrichtung des Photons mithilfe der gemessenen Energiedepositionen.
Zur Optimierung des Detektorsystems wurden Simulationen mit dem Monte Carlo Code GEANT4 Version 9.5 [2] durchgeführt. Neben der Untersuchung der Zählraten war die Charakterisierung der auftretenden Ereignisse das Ziel dieser Simulationen. Dabei wird eine koinzidente Energiedeposition in beiden Detektorebenen genau dann als nutzbares Ereignis angesehen, wenn in der Streuebene genau eine Compton Streuung und in der Absorptionsebene eine vollständige Absorption des Photons stattfand. Außer einer Punktquelle wurden Emissionen aus einer kugelförmigen Quelle mit 10 cm Durchmesser simuliert. Verschiedene Abstände des Detektors zur Quelle sowie unterschiedliche Anordnungen von Streuebene zur Absorptionsebene wurden angenommen. Des Weiteren wurden die Simulationen mit experimentellen Daten verglichen. Ferner wurde der Fehler, der durch die Abweichung zwischen simuliertem Schwerpunkt, der dem experimentellen Messpunkt nahe kommt, und dem Ort der Comptonstreuung im Streuer bzw. der Einfallsrichtung im Absorber untersucht.

Ergebnisse: Die Konfiguration aus CZT und LSO weist erwartungsgemäß eine höhere Ansprechwahrscheinlichkeit als der CZT-CZT Detektor auf (Abb.2), außerdem ist die Rate an nutzbaren Ereignissen deutlich höher (Abb.3). Die Abstände zwischen den Detektorebenen und der Abstand zur Quelle haben kaum Einfluss auf die Güte der Ereignisse. Eine Selektion von Ereignissen zur Minimierung des Rauschens anhand der Wechselwirkungstiefe in der Streuebene erscheint sinnvoll.

Zusammenfassung: Es wurden umfassende Simulationen mit GEANT4 zur Bewertung und Optimierung von möglichen Compton Kamera Systemen durchgeführt. Um die Güte der Simulationen zu bewerten wurden die Simulationsergebnisse mit experimentellen Daten verglichen.

Literatur

[1] Kormoll, T.: A Compton Camera for In-vivo Dosimetry in Ion-beam Radiotherapy. Diss.,
Technische Universität Dresden, Mathematik und Naturwissenschaften. Dresden, 2013

[2] Agostinelli, S. et al 2003 GEANT4 - a simulation toolkit Nucl. Instr. Meth. A 506(3) 250-303

  • Poster
    44. Jahrestagung der Deutschen Gesellschaft für Medizinische Physik, 18.-21.09.2013, Köln, Deutschland
  • Abstract in refereed journal
    Medizinische Physik 2013 (2013), 710

Permalink: https://www.hzdr.de/publications/Publ-19116