Origin and enhancement of the 1.3 mu m luminescence from GaAs treated by ion-implantation and flash lamp annealing


Origin and enhancement of the 1.3 mu m luminescence from GaAs treated by ion-implantation and flash lamp annealing

Gao, K.; Prucnal, S.; Skorupa, W.; Helm, M.; Zhou, S.

GaAs and GaAs based materials have outstanding optoelectronic properties and are widely used as light emitting media in devices. Many approaches have been applied to GaAs to generate luminescence at 0.88, 1.30, 1.55 µm which are transmission windows of optical fibers. In this paper we present the photoluminescence at 1.30 µm from deep level defects in GaAs treated by ion-implantation and flash lamp annealing (FLA). Such emission, which exhibits superior temperature stability, can be obtained from FLA treated virgin GaAs as well as doped GaAs. Indium-doping in GaAs can greatly enhance the luminescence. By photoluminescence, Raman measurements, and positron annihilation spectroscopy, we conclude that the origin of the 1.30 µm emission is from transitions between the VAs-donor and X-acceptor pairs.

Keywords: GaAs; 1.3 µm photoluminescence; ion-implantation; flash lamp annealing

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19205