Simulating radiation from Electron beams to full Laser-plasmas


Simulating radiation from Electron beams to full Laser-plasmas

Debus, A.; Pausch, R.; Steiniger, K.; Hübl, A.; Burau, H.; Widera, R.; Bussmann, M.; Cowan, T.; Jochmann, A.; Couperus, J. P.; Irman, A.; Schramm, U.

We show the results and its numerical analysis using CLARA from the recent Thomson scattering experiment with DRACO and ELBE. Extending the scope to the prediction and analysis of plasma radiation from Laser plasmas, we present PIConGPU with its capability of calculating the radiation from all billions of macro particles in the simulation. This is illustrated with simulation results of Laser-wakefield acceleration and the Kelvin-Helmholtz instability, which was shown to scale up to petaflop performance on the TITAN cluster at Oakridge.

Keywords: Thomson scattering; Liénard-Wiechert potentials; petaflop; HPC; X-ray; Laser-wakefield accelerator; Kelvin-Helmholtz instability; particle-in-cell code

Involved research facilities

Related publications

  • Lecture (Conference)
    Laboratory for Laser- and beam-driven plasma Acceleration (LAOLA) Workshop, 28.-29.5.2013, Wismar, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19225