Untersuchung von Szintillationsdetektoren für Prompt Gamma Imaging Systeme zur Verifikation der Dosisdeposition in der Protonentherapie


Untersuchung von Szintillationsdetektoren für Prompt Gamma Imaging Systeme zur Verifikation der Dosisdeposition in der Protonentherapie

Römer, K.; Petzoldt, J.; Pausch, G.; Rohling, H.; Hertel, N.; Fiedler, F.

Fragestellungen: Bei der Therapie von Tumorpatienten mit Partikelstrahlen ist ein exaktes und promptes Verfahren zur Überwachung der applizierten Dosisverteilung unerlässlich. Ein vielversprechender Ansatz ist die Messung Gammastrahlung, die – im Gegensatz zur Annihilationsstrahlung beim In-Beam-PET – ohne Zeitverzögerung abgestrahlt wird. Das entsprechende Gammaenergiespektrum ist jedoch sehr komplex, hochenergetischer als gängige im Labor zur Verfügung stehende Gammaquellen, und wird mit einer hohen Rate emittiert. Eine mögliche Lösung dieses Problems liefert die Compton Kamera. Jedoch sind diese Systeme sehr komplex und noch weit vom klinischen Einsatz entfernt. Sie erfordern Detektoren mit sehr guter Energieauflösung und spektroskopischer Elektronik. Eine Alternative bietet das Coded Aperture Prinzip. Hier wird eine möglichst stark absorbierende Maske vor dem ortsauflösenden Detektor angebracht, und es erfolgt eine ortsaufgelöste Zählung der Gammaquanten hinter der Maske. Auf eine genaue Energiemessung kann verzichtet werden, so dass die Anforderungen an Detektoren und Elektronik deutlich geringer ist. Kernstück aller Prompt Gamma Imaging Systeme unabhängig vom Messprinzip sind geeignete Detektoren für hochenergetische Gammastrahlung in Kombination mit einer geeigneten Elektronik. Diese Systemkomponenten müssen für den Einsatz unter den Bedingungen einer Partikeltherapie optimiert und charakterisiert werden, wobei Faktoren wie Energiebereich, Energieauflösung, Zählratenfestigkeit und Zeitauflösung entscheidend sind.

Material und Methoden: Standardisierte Proben verschiedener Szintillatormaterialien werden zunächst mit einem Referenz-Photomultiplier gekoppelt und mit klassischer Laborelektronik mit Hilfe radioaktiver Quellen bezüglich Photoelektronen-Ausbeute und Energieauflösung charakterisiert. Die Untersuchung weiterer Proben aus den gleichen Materialien in Abmessungen und Geometrien, die für ortsauflösende Messungen mit Silizuim-Photodetektoren eignen, mit derselben Technik erlaubt es dann, den Einfluß der Detektorgeometrie auf diese Parameter zu ermitteln. Schließlich lässt sich der Einfluss des Photosensors auf Energie-, Orts- und Zeitauflösung quantifizieren, wenn die vorher charakterisierten Proben mit unterschiedlichen, modernen Silizium-Photodetektoren ausgemessen werden. Die gewonnenen Erkenntnisse sollen es gestatten, für den jeweiligen Einsatzfall eine optimale Szintillator-Photosensor-Kombination zu wählen.

Ergebnisse: Erste Szintillatormaterialien wurden mit Hilfe des Referenz-Photomultipiers (XP5500/B von Photonis) hinsichtlich ihrer Photoelektronen-Produktion charakterisiert. NaI(Tl) hat demnach eine Ausbeute von >9000 Photoelektronen pro MeV. GAGG, das eigentlich mehr Licht liefern sollte, dessen Wellenlänge mit 510nm aber für die Effizienz der Photokathode ungünstiger ist, liefert >6000 Photoelektronen pro MeV. Diese nunmehr bekannten Szintillatoren werden dann mit Hilfe des digitalen Silizium-Photomultipliers (dSiPMT) der Firma Philips Digital Photon Counting auf ihre Einsatzmöglichkeit in ortsauflösenden Systemen getestet. Erste Messungen wurden auch mit analogen Silizium-Photomultipliern (SiPMT) oder Avalanche-Photodioden (APD) durchgeführt. Vergleiche mit Geant4 Simulationen zur Nachweiseffizienz und Lichtsammlung werden kurz vorgestellt.

Zusammenfassung: Die bildgebende Messung prompter Gammastrahlung ist ein vielversprechendes Verfahren zur Verifikation von Tumortherapien mit Partikelstrahlung. Entsprechende Messsysteme werden zurzeit entwickelt, benötigen aber maßgeschneiderte Detektoren. Diese Arbeit präsentiert Verfahren und erste Ergebnisse zur Charakterisierung von Szintillationsdetektoren für solche Systeme. Die systematische Untersuchung verschiedener Kristalle mit unterschiedlichen Photosensoren erlaubt dabei die Entkopplung von Material-, Geometrie- und Lichtdetektor-Effekten und damit eine Optimierung der Eigenschaften von Szintillationsdetektoren für die jeweilige Anwendung.

Literatur
[1] G. F. Knoll, “Radiation Measurements”, Eds. John Wiley & Sons, New York, Third Edition, pp. 629-631, 2000.
[2] Z. Guzik, S. Borsuk, K. Traczyk, and M. Plominski, “TUKAN-an 8k pulse-height analyzer and multichannel scaler with a PCI or a USB interface”, IEEE Trans. Nucl. Sci., vol 53, pp. 231-235, 2006.
[3] M. Bertollaccini, S. Cova, and C. Bussolatti, “A technique for absolute measurement of the effective photoelectron per keV yield in scintillation counters”, Proceedings of the Nuclear Electronics Symposium, Versailles, France, 1968.
[4] S. Agostinelli et al., “GEANT4: A simulation toolkit. ”, Nucl. Instrum. Meth., A506:250–303, 2003.
[5] Saint Gobain, Brillance 380 Data Sheet.
[6] C. Plettner et al, “CaF 2 (Eu): An “Old” Scintillator Revisited”, Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE
[7] T. Frach et al, “The digital silicon photomultiplier — Principle of operation and intrinsic detector performance”, Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE, pp.1959,1965, Oct. 24 2009-Nov. 1 2009
[8] T. Kormoll et al, “In-Vivo Dosimetry for Photon Radiotherapy Based on Pair Production”, Nuclear Science, IEEE Transactions on , vol.57, no.3, pp.1125,1131, June 2010

Keywords: proton therapy; in-vivo dosimetry; scintillator

  • Lecture (Conference)
    44. Jahrestagung der Deutschen Gesellschaft für Medizinische Physik (DGMP 2013), 18.-21.09.2013, Köln, Deutschland
  • Open Access Logo Abstract in refereed journal
    Medizinische Physik 2013 (2013), 322-323
    ISSN: 978-3-9816002-1-6

Permalink: https://www.hzdr.de/publications/Publ-19235