Status of Reactor Design and Analytical Investigations


Status of Reactor Design and Analytical Investigations

Willms, T.; Kryk, H.; Hampel, U.

For the investigation of the isobutane oxidation a micro reactor is planned. For its design, the conversion of isobutane has been calculated as a function of temperature and time by a kinetics found in literature to estimate reaction times. Low temperatures (< 130°C) are leading to high residence times. To realize those high residence times, very low isobutane flows are needed which cannot be realized exactly in the case of a capillary reactor of 10 m (< 1 µl/min). So for low temperatures a 100 m capillary has to be used, whereas for higher temperatures a 10 m capillary is sufficient. The gas - liquid relations of some taylor flows at comparable conditions (10 µl flow rate) - realized by hexane and nitrogen - have been studied.
Furthermore the separation of the most important isobutane oxidation products has been presented. Liquid products (DTBP, acetone, TBHP, t-butanol, methanol, formic acid ) are separated by GC-MS using a StabiloWax Column, gaseous components of the medium (isobutane, carbon dioxide, oxygen etc.) are separated by GC-TCD and GC-MS.

  • Lecture (others)
    Halbjahrestreffen der Helmholtz Energie Allianz., 30.09.-02.10.2013, Bochum, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19278